博客
关于我
AAAI论文首发:几何驱动的自监督的人体3D姿态估计方法
阅读量:798 次
发布时间:2023-04-17

本文共 848 字,大约阅读时间需要 2 分钟。

几何驱动的自监督人体3D姿态估计方法

李杨

徐亦达团队

近年来,基于深度学习的单目人体3D姿态估计吸引了越来越多研究人员的关注。传统的深度神经网络训练依赖于大量标注数据,而人体3D关节点的标注工作却需要高昂成本。针对这一痛点,本文提出了一种全新的自监督人体3D姿态估计方法,完全依托相机几何先验知识,无需额外标注。

我们的方法基于两阶段框架:首先进行2D人体姿态估计,然后通过2D到3D姿态提升完成最终目标。为实现自监督训练目标,我们设计了变换重投影损失机制,充分利用多视角一致性信息构建损失函数。同时,结合2D关节点的置信度,有效降低了遮挡带来的噪声影响。为了保障3D姿态估计的尺度信息,我们设计了一个双分支网络结构,能够在训练过程中自动保留关键尺度特征。

在Human3.6M和MPI-INF-3DHP两个主流数据集上,我们验证了该方法的优越性。实验结果表明,与现有的弱/自监督方法相比,本文提出的方法在多个关键指标上都达到了更优的性能。

算法框架

实验效果

该方法的核心创新点在于通过几何先验知识构建自监督学习框架,避免了传统方法对大量标注数据的依赖。这种自监督学习不仅降低了数据标注成本,还显著提高了模型的泛化能力和鲁棒性。

通过多视角一致性信息的引入,我们的模型能够更好地处理复杂的场景,包括部分遮挡的情况。这种鲁棒性在实际应用中尤为重要。

在实际应用中,我们的模型在多个关键指标上均表现优异,包括精度、速度和鲁棒性等方面。实验结果表明,我们的方法在复杂场景下的稳定性和准确性远超现有方法。

总结

本文提出了一种全新的几何驱动的自监督人体3D姿态估计方法,有效解决了传统方法对标注数据依赖性的问题。通过创新的损失函数设计和网络架构优化,我们的方法在多个关键指标上均优于现有方法。

该方法的优势体现在以下几个方面:

  • 完全依赖几何先验知识,无需额外标注
  • 通过自监督学习降低数据依赖
  • 强化模型的鲁棒性和泛化能力
  • 如果需要进一步了解或下载完整论文,建议访问我们的GitHub仓库或相关发布渠道。

    转载地址:http://jvgfk.baihongyu.com/

    你可能感兴趣的文章
    MySQL 日期时间类型的选择
    查看>>
    Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)
    查看>>
    MySQL 是如何加锁的?
    查看>>
    MySQL 是怎样运行的 - InnoDB数据页结构
    查看>>
    mysql 更新子表_mysql 在update中实现子查询的方式
    查看>>
    MySQL 有什么优点?
    查看>>
    mysql 权限整理记录
    查看>>
    mysql 权限登录问题:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: YES)
    查看>>
    MYSQL 查看最大连接数和修改最大连接数
    查看>>
    MySQL 查看有哪些表
    查看>>
    mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
    查看>>
    MySql 查询以逗号分隔的字符串的方法(正则)
    查看>>
    MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
    查看>>
    mysql 查询,正数降序排序,负数升序排序
    查看>>
    MySQL 树形结构 根据指定节点 获取其下属的所有子节点(包含路径上的枝干节点和叶子节点)...
    查看>>
    mysql 死锁 Deadlock found when trying to get lock; try restarting transaction
    查看>>
    mysql 死锁(先delete 后insert)日志分析
    查看>>
    MySQL 死锁了,怎么办?
    查看>>
    MySQL 深度分页性能急剧下降,该如何优化?
    查看>>
    MySQL 深度分页性能急剧下降,该如何优化?
    查看>>